If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+2x-1012=0
a = 1; b = 2; c = -1012;
Δ = b2-4ac
Δ = 22-4·1·(-1012)
Δ = 4052
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{4052}=\sqrt{4*1013}=\sqrt{4}*\sqrt{1013}=2\sqrt{1013}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-2\sqrt{1013}}{2*1}=\frac{-2-2\sqrt{1013}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+2\sqrt{1013}}{2*1}=\frac{-2+2\sqrt{1013}}{2} $
| 6m+5-(-2-3m)-9m+4=13 | | x-1.7=6.9 | | G(x)=6x/x+2 | | 6m+5=13 | | 2x^2(6x+1)^-2/3+2x(6x+1)^1/3=0 | | 2x=6+(8/x) | | 200=-8p | | -4-m=18 | | 8+10(7+6r)=8+10(7=6r) | | 8x÷2;x=-1/4 | | (x+9)2-2=0 | | 6x+19x+5=180 | | 10x^2+37x=0 | | 10=6+x/2 | | 6x+19x=180 | | n/3.7=5 | | v-31=v | | m/1.6=6 | | 5(d=1)=4(d-2) | | 7x2=-18x-4 | | 3x(x)-2=5x | | 7x-8=3×+4 | | g/(-4)-5=3 | | x/350=5/150 | | j/(-2)+7=-12 | | 6(3x+2x)=89 | | m/2-(-7)=2 | | 2=(m/2-7) | | y-37=180 | | -b-5=3 | | s+53=s+7 | | 132-w=179 |